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Numerical Results for the Three-State Critical
Potts Model on Finite Rectangular Lattices
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Partition functions for the three-state critical Potts model on finite square
lattices and for a variety of boundary conditions are presented. The distribution
of their zeros in the complex plane of the spectral variable is examined and is
compared to the expected infinite-lattice result. The partition functions are
then used to test the finite-size scaling predictions of conformal and modular
invariance.
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1. INTRODUCTION

The location in the complex plane of the zeros of the partition function of
a statistical mechanical model has been a much studied area since the
publication of Lee and Yang’s circle theorem for the Ising model in 1952.¢"
For the Potts model®*’ numerical studies of the location of the zeros have
been carried out in, for example, refs. 4-7.

Baxter has studied the zeros of the partition function of the zero-
temperature antiferromagnetic g-state Potts model on the triangular lattice,
expressing the partition function Z as a polynomial in the variable g. Martin
el al. considered” the three-state Potts model on triangular and square
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lattices in two and three dimensions, expressing the partition functions as
polynomials in a temperature-like variable. Here we study the square-lattice
three-state Potts model at criticality, expressing Z as a polynomial in a
variable z related to the anisotropy (often called the spectral parameter) of
the model.

As the partition functions can be expressed as polynomials, they are
determined up to a constant multiple by the location of their zeros. In the
thermodynamic limit, we expect® the zeros to accumulate on lines dividing
the complex z plane into domains, the free energy having a different
analytical form in each domain.

A variety of boundary conditions have been considered by us,
including cylindrical, toroidal, and skew-toroidal. It is expected that the
distribution of zeros of a finite system with toroidal boundary conditions
will approximate better the distribution in the thermodynamic limit than
either systems with cylindrical or fixed boundary conditions, and this
behavior was observed.

At criticality, the Potts model is solvable by a Bethe ansatz.®~'") While
this gives explicit formulas for the infinite system, the results for a finite
lattice are still extremely complicated. Rather than use these, we have
calculated Z directly (using edge transfer matrices to build up the lattice
one edge at a time). Part of our motivation is to better understand the
results of the Bethe ansatz by studying the analytic properties of the
partition function in the complex z plane.

We are also able to test the finite-size scaling predictions of conformal
and modular invariance for a critical system. One expects the partition
function for a finite L x M lattice, Z,,,, to be related to the free energy per
site of the infinite system f by the relation‘!?

InZ,,, = —2LMf/kT +In Z(q) + correction terms (1.1)

where k is Boltzmann’s constant, T is the temperature of the system, and
Z(q), defined in Section 3, is the modular invariant partition function of
the system, which characterizes the finite-size corrections for the system.
The correction terms approach zero as L, M — .

Given the relatively small sizes of the lattices considered, we found this
relationship to hold to a remarkable degree of accuracy. In particular,
for a spatially isotropic model on an L x L lattice, for which In Z(g)~ 1,
the correction terms appear to approach zero as 1/L, with a very small
(~0.04) numerical coefficient.
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2. PARTITION FUNCTIONS AND EXACT SOLUTION

2.1. Toroidal Boundary Conditions

Consider the “LxM” rectangular lattice %,,,, rotated through
45 deg, shown in Fig. 1. It has 2M rows, each containing L sites, so there
is a total of 2LM sites. Spin variables o, live on each site of the lattice, and
we allow each of them to take on the integer values 0,.., N — 1. Nearest-
neighbor spins interact along the bonds of the lattice, with Boltzmann
weights W(g;—0;) in the SW — NE direction, and W(s,—0,) in the
SE — NW direction, indicated also in Fig. 1. (Differences between spins are
interpreted modulo N.)

We assume first toroidal boundary conditions on the lattice. Thus in
each row we identify the first and last spins, so that ¢,=0,,,, where
0,,0,,; are the first and last spins in the row, respectively, and in each
column we identify the top with the bottom spin of that column,
cM=0cM*D where ¢!V, ¢™*" are the bottom and top spins in the ith
column, respectively.

The partition function for the model on an L x M lattice can be
written as

ZLM:Z H W(Gi_aj) H W(O’,--—O’k) (2.1)

{e} <iJ> k>

where the sum is over all values O to N—1 of all the spins g;, and the
products are over all SW — NE edges (i, j> and all SE - NW edges
k).

(M+1) (M41)
o, Tt

T, g T, (e

Fig. 1. The square lattice ¥, ,, with L sites per row and M =2. The weight functions W and
W are indicated.
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This definition suits a large class of models, including the chiral Potts
model.!'* ') In this paper we consider the critical (N = 3)-state Potts
model, which is a particular (critical) case of the chiral Potts model. It also
coincides with the Z, Fateev-Zamolodchikov model!'*) and with the N=3
critical Kashiwara-Miwa model.!'®

We parametrize the Boltzmann weights as

W(0)= (1 + x)/x (2.2a)
w(l)=w(2)=1 (2.2b)
W(0)=1+3x (2.2¢)
W(1)=W(2)=1 (2.2d)

where x can be considered to be an anisotropy parameter.

From (2.1), Z,,(x) will be a Laurent polynomial in x with positive
integer coefficients, which we have calculated for a variety of lattices.

For the calculations, we actually used edge transfer matrices!”) instead
of (2.1) to calculate the partition function, calculating the polynomials
using Fortran and modular arithmetic.'® When considering the zeros of
a polynomial, it is important to evaluate the coefficients exactly, as the
location of the zeros can be sensitive to errors in the coefficients.

We found the length of the largest coefficient in the polynomials to
increase exponentially with the size of the lattice, and for the 6 x 6 lattice,
the longest coefficient was already an integer of order 10°. A rotation of
the lattice through 90 deg is equivalent to replacing x by 1/3x, so for
toroidal boundary conditions, Z,,, must be a polynomial in y=3x+ 1/x.
Expressing the partition function in terms of y halves the degree of the
polynomial, and approximately halves the length of the coeflicients, both of
which make it easier to handle the polynomial. The partition functions for
Ix1 up to 5x5 lattices are presented in the appendix in terms of the
variable y.

The free energy of the Potts model at criticality can be found either by
its Temperley—Lieb equivalence to an ice-type model as in refs. 9 and 17 or
by the inversion relation method.® Following ref. 8, we introduce the
variable p, where 2 cos u=\/1V, so u=mn/6. We then reparametrize the
anisotropy variable x in terms of the spectral parameter v,

1 sin{pu—v)

X= -
smv

(2.3)

S
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The Boltzmann weights are then

_sin(u +v)
0)_sin(y—v) (24)
w(0) =——Sin(52ir‘l‘ ; v) (2.5)

The others remain unchanged. Regarding v as a variable, we denote the
partition function per site for a finite lattice as r, ,,(v) = (Z,)""**¥, and
for the infinite lattice

()= lim x,p(0) (2.6)

where the limit is taken through large values of both L and M.
In ref. 8 a number of relations for k(v) are given, including the inver-
sion, periodicity, and crossing symmetry relations. The latter two are

k(v)=«k(n+v) (2.7}
k(v)=r(p—v) (2.8)

To match the normalization of the weights (2.4) and (2.5) with those used
in ref. 8, we should take the constant p, therein to be

sin p sin 2u

Po=m (2.9)

The inversion relations for x(v) then read®
K(v) Kool —0) = pd sin(p + v) sin(p —v)/sin? u (2.10a)
k(v) Kue(2u — v) = pi sin v sin(2u — v)/sin® p (2.10b)

k(v) Kyo{m—v) = — p2sin(u—v)sin(p+v)/sin . (2.10c)
K(0) Koo+ 2u—v) = — pl sin v sin(2u — v)/sin? p (2.10d)

where k,.(v) is the analytic continuation of x(v) through the point v =0,
defined in ref. 8. To get the free energy from the inversion relations, one
uses Eqgs. (2.10a) and (2.10b) when O<Re(s)<gy, (2.10b} and (2.10c)
when g < Re(v) <=®/2, (2.10c) and (2.10d) when #/2 < Re(v) < p+ =/2, and
Eqs. (2.10d), (2.10a), and (2.7) for u + n/2 <Re(v) < m.

This divides the complex v plane into four regions, in each of
which x(v) has a different analytical form. The physical regime is when
0 < Re(v) < y, where all the Boltzmann weights are real and positive. The
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expressions for k(v) in each of the regions can be found from the
appropriate inversion relations above with some analyticity assumptions®
on x(v), and the results are presented here for completeness.

(i) For 0<Re(v)<pu:

_ @ cosh(rm— 2u)¢ sinh vt sinh(p —v)¢?
1nxun_4np0+2j_w it a1 cosh dr (211a)
(i) u<Re(v)<in:
¢y, v, 1) sinh(v—p) ¢
In x(v) = 2 dr 2.11
nx(v)=In po+ ﬁﬂﬂsmhmsmMn—ZMI (2.11b)

where
#{u, v, t)=sinh(n — p) ¢ sinh(n — 2p —v) ¢ + sinh pe sinh(v —2u)r  (2.11c)
(i) iz<Re(v)<pu+in:

= cosh ut cosh(m —2u)t —cosh 2ut cosh(2v — 7w — p)t i

mxw)=mp0+j

= t sinh 7z cosh ut
(2.11d)
(iv) p+in<Re(v)<nm:
o —v, t)sinh(m —v) ¢
Ink@)=lnpy+2 [ PWemtruvsioh@m=o)t =,

e t sinh nt sinh(m — 2u)t

Equation (2.7) is used to find in In x(v) outside the range 0 <v< 7.
Since u==/6 is a rational fraction of n, we can reduce these integrals to
infinite series. For the physical regime, Eq. (2.11a) thus gives

1 L sinbv(2n—1) 2
lnx(v)—21n3+ Y 1) +n(,u 2v) In cot 3v

3n
0 sin(u + v) sin(2u — v)
sin(g—v)sinv

n=1

+§1n[tanvtan(u—v)] (2.12)

In the thermodynamic limit, we expect the zeros of the partition
function to lie on the boundaries between these phases, which is when
Re(v)=0, y, n/2, or p+m/2. )

We introduce a new variable

_(1—0Y)x—o?
T (l—0)x+1

— L2iv

(2.13)
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and have plotted the zeros for the finite lattices in the z plane. Then the
boundaries between the phases are the rays arg(z)=0, n/3, n, or 4n/3, or
equivalently the line Re(x)= —1/2 and the circle [Re(x)+1/3]%+
Im(x)?=1/9. These rays in the z plane are indicated in Fig. 2.

The zeros in the z plane for the 4x4, 5x5, and 6 x6 lattices are
shown in Figs. 2-4, respectively. They are beginning to fall on the expected
rays, with some scatter at the ends of each ray. Also note the line of
zeros for the 5 x 5 lattice with arguments of approximately +27/3. For the
lattices we looked at (1 x 1 through 6 x 6), these occurred when L and M
were both odd.

We can verify the calculation in ref. 8 of the density of zeros lying
on each contour of the phase diagram. According to Eqgs. (5.15) of
ref. 8, one would expect to find for an Lx M lattice the fraction
(mr—3u)/(m—2u)=3/4 of the zeros on the rays arg z=0 and =n/3, and the
other p/(m —2u) = 1/4 of the zeros on the rays arg z =7 and 4n/3. That this
is the case can be verified from the included graphs, and i1s most obvious
in Fig. 2, which shows the distribution of zeros for the 4 x 4 lattice parti-
tion function, and the rays on which we would expect the zeros to lie in the
thermodynamic limit. There are 64 zeros, with 8 of them “on” each of the
rays arg z=7 and 4n/3, and 24 of them “on” each of the remaining two
rays, as expected.

4.0 .
o//
/ !
20 /:
&
£
= cee ¥ o,
E‘ 00— -—— -- /o . [ S
/S
-2.0
-4.0 -2.0 0.0 2.0 4.0
Re(z)

Fig. 2. Zeros of the partition function for 4 x 4 lattice, showing the lines on which the zeros
are expected to accumulate in the infinite-lattice limit.
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5.0

3.0 [ .
| -
I
. o
1.0 - . i
hie R #oH 5 © o
3‘9 B °
-1.0 N .
3.0 : )
5.0 L J; . .
-5.0 3.0 1.0 1.0 3.0
Re(z)
Fig. 3. Zeros of the partition [unction for the 5x 5 lattice.

2.2. Skew-Toroidal Boundary Conditions

The effect of introducing skewed boundary conditions onto the lattice

was also investigated. For an L x M lattice with toroidal boundary condi-
tions, we identify the first and last spins in each row and the top and
bottom spins in each column. If we skew the boundary conditions, we

Im({z)

-5.0

-3.0

-5.0

Fig. 4.

-3.0 -1.0 1.0 3.0
Re(z}

Zeros of the partition function for the 6 x 6 lattice.
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instead identify o, =0,,,+h, ¢'V=0™*Y 4y, where h and v are the
horizontal and vertical skewing parameters, ¢,, o, ., are the first and last
spins in a horizontal row, and ¢!", ¢!**! are the bottom and top spins
in column i. We denote the partition function of the model on the L x M
lattice with skewing parameters h and v as Z,,. We can restrict without
loss of generality the skewing parameters to take the values 0, 1, 2, so
in general we will expect nine partition functions with skewed boundary
conditions.

These nine functions quickly reduce to five, and only four for a square
lattice, when symmetries of the model on the lattice are taken into account.
From Egs. (2.2a)-(2.2d), replacing x by 1/3x is equivalent to interchanging
W(n) with W(n). Reflecting the lattice horizontally or vertically, we thus
get

1 ]
2=zl (32) =2t (55) (14)

and so we are just left with the following five partition functions:
Z(Bw(x) =Z p(x)
Z3,(x) = ZB(x)
Z 5u(x)=Z 5 (x) (2.15)
Z plx) = Z 7y(x)
Z 5(x) = Zy(x)

Rotating the lattice through 90 deg is equivalent to interchanging W(n)
with W(n) and L with M. This gives the symmetry relation

1
240 =2 (57) (216)

which, on a square lattice, gives us the relationship
Z% (x)=Z 5 (x) (2.17)

and so there are only the four different partition functions on a square
lattice.

Finally we note the relation following from the self-duality property of
the model

ZPx) = Z000) + Z () + Z (x) + Z [ (x) (2.18)

and this was verified for all the partition functions generated.
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Guided by the Ising model case [Eq. (5.2) of chapter IV of ref. 197,
one may expect that certain linear combinations of these partition func-
tions have zeros located on some simple curves (even for finite L and M).
This does not seem to be the case for the three-state Potts model, we were
unable to find any linear combination whose zeros lay on simple contours
and remained there as the lattice size was increased.

3. FINITE-SIZE CORRECTIONS

3.1. Conformal and Modular Invariance

The partition functions we have calculated can be used to test the
predictions of finite-size corrections due to conformal and modular
invariance. Many reviews of these subjects exist,"'>?*?® and only a
summary of the necessary results will be presented here.

At criticality, various observables of a statistical mechanical system are
believed to be invariant under scaling and conformal transformations. This
assumption, which originally led to predictions of relationships between
the critical exponents,’®” has been developed into a classification of
universality classes of the critical behavior for two-dimensional systems
(determined by a parameter ¢, the central charge of the Virasoro algebra
associated with the model)**®’ and more recently into a classification of the
modular invariant partition functions on a torus.‘*

It was shown in ref. 27 that for a statistical mechanical system with a
Hermitian transfer matrix, corresponding to a unitary conformal field
theory, if ¢ < 1, then ¢ is restricted to take on the values

6
C=l—m (31)

where h=4, 5, 6,....

Modular invariance predicts the leading corrections to the partition
function should take the form (1.1), where Z,,, is the partition function on
an L x M lattice, f is the free energy per site in the thermodynamic limit,
and Z{q) describes the leading finite-size corrections in the limit of L, M
large, with the ratio L/M fixed. Here ¢ is the modular parameter, given
by(ZO)

q=62nir’ ,t:ei(n—f))L/M (32)
where 6 = 6v is the spatial anisotropy of the model.

One requires Z(g) to be invariant under the action of the modular
group, which maps a torus formed by identifying sides of a parallelogram
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in the complex plane with vertices 0, 1, 7, and 141t onto itself. The
modular group acts through the generators 7 and S, where

T t-1+1 (3.3a)
S ot —1! (3.3b)

Note that the rotational symmetry x — 1/3x of Z,,, corresponds to (3.3b).

These requirements place very stringent constraints on the form of
Z(q), and in fact lead to a complete classification of all possible modular
invariant partition functions for ¢ < 1 theories, which are labeled by the A4,
D, and E Lie algebras.©®

The three-state Potts model is related to the D, minimal conformal
field theory®® with ¢ =4/5, h=6.%®) The corresponding modular invariant
partition function reads

Z(q)= |Xl,x(Q) + XA,l(q)|2 + |X2,1(€I)+Xs.1(‘])|2+ 2 |X3.3(‘1)|2+2 |X4‘3(‘])|2
3.4)

where y,, is the character of the representation of the Virasoro algebra,
given by

Xrs=q~ " I 1=g)7!

n=1

o«
{[2hh— )+ hr — (h— 1)s12 — 1 }/ahth = 1)
x 2 {q ’

n= — o

. q{ L2800 — D+ hr+ (h— 1)1 — 1 }/ah(h — l]} (35)

3.2. Numerical Results

In this section, we shall verify the predictions of modular invariance by
numerically evaluating the correction terms in (1.1) for various lattice sizes
and demonstrating that they vanish as the lattice size increases. Writing the
correction terms as C,,,, we can write (1.1) as

InZ,,,(v)= —2LMfIkT+1n Z(q) + Cpp (3.6)

and we expeét that
Cin—0 as L M- (3.7)

It is computationally easier to evaluate the partition function Z,,,
numerically for a particular value of x than it is to evaluate the entire
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Table I. Correction Terms C,,, for the Isotropic Model

M L=1 2 3 4 5 6 7 8 9

1 00341 00852 01580 0.2342 03078 03781 04458 0.5119 05771
2 00852 00194 00251 00360 00479 0.0603 00728 0.0852 0.0974
3 0.1580 00251 00132 00140 00170 00206 0.0242 0.0279 0.0317
4 02342 00360 0.0140 0.0099 00098 00110 00124 0.0139 00154
5 03078 00479 00170 00098 00079 00077 00082 00089 0.0096
6 03781 00603 00206 00110 00077 0.0066 0.0064 0.0066 0.0070
7 04458 00728 0.0242 00124 00082 0.0064 0.0057 0.0055 0.0056
8 05119 00852 0.0279 00139 0008 00066 0.0055 0.0050 0.0049
9 05771 00974 00317 00154 0.0096 00070 0.0056 0.0049 0.0045

polynomial, and so for these calculations we are able to use larger lattice
sizes than in Section 2. Here, we present results on up to 9 x 9 lattices.

For the numerical studies, we considered an isotropic (8 =n/2) and a
particular anisotropic (6 = n/4) case of the model. From (2.12) and (3.2) we
have

() 0=n/2, g=exp(—2nL/M), fIkT=2.0702  (3.8a)
(i) 0=n/4, g=exp[—/2n(1+i)L/M], fikT=23150 (3.8b)

where (1) and (ii) correspond to the isotropic and anisotropic cases, respec-
tively. Using these and the numerical values of Z,,,, we calculated C,,,.
They are given in Tables I and II for all L x M lattices with 1 < L, M <9.
The correction terms are close to zero as expected, and vanish as the lattice
size increases in both directions.

Table ll. Correction Terms C,,, for the Anisotropic Model

M L=1 2 3 4 5 6 7 8 9

1 00256 00266 0.0385 00505 00625 00746 0.0867 00988 0.1111
2 00266 —0.009 00141 00109 00116 00115 00110 00103 0.0095
3 00385 00141 —0.0042 0.0085 0.008 00077 0.0076 0.0074 0.0069
4 0.0505 00109 00085 0.0001 00057 0.0070 0.0065 0.0062 0.0060
5 00625 00116  0.0086 0.0057 0.0021 0.0045 0.0057 00056 0.0053
6 0.0746 00115 0.0077 0.0070 00045 0.0028 0.0039 00047 0.0048
7 0.0867 00110  0.0076 00065 0.0056 00039 00029 0.0035 0.0040
8 0.0988 00103  0.0074 00062 00056 0.0047 00035 00029 0.0031
9 o0.1111 0.0095 0.0070 0.0060 0.0053 0.0048 0.0040 0.003! 0.0028




Three-State Critical Potts Model 677

0.040 T T T —
< Isotropic Model
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0.030 {
! o
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s

Fig. 5. Next-order corrections to the modular invariant partition function. Top: isotropic
model; below: anisotropic model.

We next restricted our attention to just the square L x L lattices. In
this case, we have for the isotropic model (i) In Z(g) = 1.0479 and for the
anisotropic model (ii) In Z(g) = 1.0535. Figure 5 plots C,, against 1/L for
the square lattice models. Both of the curves are clearly converging toward
zero as expected. For the isotropic model, the curve is approximately
linear, with

CLL=0'04L_1 (3.9)

The results are less clear for the anisotropic model, but still compatible
with (3.7).

APPENDIX: THE PARTITION FUNCTIONS

We have calculated the partition functions from Section 2 for all
values of L and M in the range 1 <L, M <6, and all values of 4 and v.
Electronic and hard copies are available on request from the first author.
Here we present only the square lattice nonskewed partition functions
for L=1,..,5. It is convenient to divide each of them by a factor of 3*
and (using our earlier remarks) to exhibit them as polynomials in y=
3x+ 3+ 1/x, so we actually present

PLL(y)=3_LZLL(y) (A1)
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We have
Pu(y)=3+2y+)’
Pox(y) =243 + 648y + 324y> — 72> + 534y* — 184p° + 92y° — 8y + *
Ps5(y)= 177147 + 1062882y + 2302911y
+ 2047032 + 1377810p* + 2913084y°
+ 3158028y° + 664848y7 + 103518y® + 930852)°
+ 306666y '° — 270864y ! + 220374y
— 62532y + 16956y — 2160y'5 +297y'¢ — 18y'7 4 '8
Po(y)=1162261467 + 12397455648y + 55788550416y
+ 136372012128y + 214315274952y + 324629671968)°
+ 5826549062885 + 750632777568y” + 607521384972)°
+ 795120766560y° + 965737104624'° + 130605470496y !
+ 3224425844882 + 916063289568y — 526868886960y ¢
+ 147997956384 + 596145500838 ' — 737714208096y "7
+610533631440y"'® — 343154709792y " + 156664410984y°
— 558365964482 + 16860264048y°% — 4098594336y %
+ 856735500y — 143074912y + 206066082
— 22742087 + 217560y — 14816y + 8800 — 323! + p32
Pss(y) = 68630377364883 + 1143839622748050y + 8578797170610375y>
+ 38127987424935000y° + 114511055566221450y*
+268776892687508460y° + 589388078205374850y°
+ 1246116772225702800y" + 2209159127195440650y°
+ 3194839081210230900y° + 4647346048981897830y'°
+7079557052341783800y " + 8225530257835830150y "2
+7279248720513503700y ' + 9357732890461402200y 4
+ 11647930212445937760y "' + 5762094309484412175'6
+ 3517524430230368250y'" + 9571985653589609175y '
+4023612873756685800y!° — 2229800910702224940y°
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+ 48981590540267004002! + 2681786734169855850y22
— 3147689863270981800y* + 2051627825339895150y2*
+ 1388963485815183972y — 2128929001082085150y2
+ 1331521145545374000y%" + 57684225191190300y2

— 746264103632814600y% + 794712829019154840y°
—530326171478212200y°' + 272216641223522475y2

— 112688467988737950y% + 39181982508236025y*

— 11549532336644520y°5 + 29393417446105505°

— 645489038603700y°7 + 123764044894650y
—20572630471200y + 2994872555520y

— 376168331200*! + 41274998450y — 3850715800y**
+ 311887300y — 20890960y + 1201800y*¢ — 54000y’
+2025y% — 509 4 %
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