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Partition functions for the three-state critical Ports model on finite square 
lattices and for a variety of boundary conditions are presented. The distribution 
of their zeros in the complex plane of the spectral variable is examined and is 
compared to the expected infinite-lattice result. The partition functions are 
then used to test the finite-size scaling predictions of conformal and modular 
invariance. 
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1. INTRODUCTION 

The location in the complex plane of the zeros of the part i t ion function of 
a statistical mechanical model has been a much studied area since the 
publication of Lee and Yang's circle theorem for the Ising model in 1952. tl~ 
For the Ports model ~z' 31 numerical studies of the location of the zeros have 
been carried out in, for example, refs. 4-7. 

Baxter has studied the zeros of the part i t ion function of the zero- 
temperature antiferromagnetic q-state Potts model on the tr iangular  lattice, 
expressing the part i t ion function Z as a polynomial  in the variable q. Mart in  
el al. cons idered ' the  three-state Potts model on tr iangular  and square 
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lattices in two and three dimensions, expressing the partition functions as 
polynomials in a temperature-like variable. Here we study the square-lattice 
three-state Potts model at criticality, expressing Z as a polynomial in a 
variable z related to the anisotropy (often called the spectral parameter) of 
the model. 

As the partition functions can be expressed as polynomials, they are 
determined up to a constant multiple by the location of their zeros. In the 
thermodynamic limit, we expec(8) the zeros to accumulate on lines dividing 
the complex z plane into domains, the free energy having a different 
analytical form in each domain. 

A variety of boundary conditions have been considered by us, 
including cylindrical, toroidal, and skew-toroidal. It is expected that the 
distribution of zeros of a finite system with toroidal boundary conditions 
will approximate better the distribution in the thermodynamic limit than 
either systems with cylindrical or fixed boundary conditions, and this 
behavior was observed. 

At criticality, the Potts model is solvable by a Bethe ansatzJ 9 J~l While 
this gives explicit formulas for the infinite system, the results for a finite 
lattice are still extremely complicated. Rather than use these, we have 
calculated Z directly (using edge transfer matrices to build up the lattice 
one edge at a time). Part of our motivation is to better understand the 
results of the Bethe ansatz by studying the analytic properties of the 
partition function in the complex z plane. 

We are also able to test the finite-size scaling predictions of conformal 
and modular invariance for a critical system, One expects the partition 
function for a finite L x M lattice, ZLM, to be related to the free energy per 
site of the infinite system f by the relation t~21 

In ZLM = -- 2 L M f / k T  + In Z(q)  + correction terms (1.1) 

where k is Boltzmann's constant, T is the temperature of the system, and 
Z(q),  defined in Section 3, is the modular invariant partition function of 
the system, which characterizes the finite-size corrections for the system. 
The correction terms approach zero as L, M ~ c~. 

Given the relatively small sizes of the lattices considered, we found this 
relationship to hold to a remarkable degree of accuracy. In particular, 
for a spatially isotropic model on an L • L lattice, for which In Z(q).,~ 1, 
the correction terms appear to approach zero as l /L, with a very small 
(--~0.04) numerical coefficient. 
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2. PARTITION FUNCTIONS AND EXACT SOLUTION 

2.1. Toroidal Boundary Condit ions 

Consider the " L x M "  rectangular lattice &~ rotated through 
45 deg, shown in Fig. I. It has 2M rows, each containing L sites, so there 
is a total of 2LM sites. Spin variables ai live on each site of the lattice, and 
we allow each of them to take on the integer values 0 ..... N -  1. Nearest-  
neighbor spins interact along the bonds of the lattice, with Bol tzmann 
weights W(ai-aj) in the S W - - , N E  direction, and ff '(ai-ai) in the 
SE ~ N W  direction, indicated also in Fig. 1. (Differences between spins are 
interpreted modulo N.) 

We assume first toroidal boundary  conditions on the lattice. Thus in 
each row we identify the first and last spins, so that  a l = a L + l ,  where 
a~, aL+~ are the first and last spins in the row, respectively, and in each 
column we identify the top with the bo t tom spin of that column, 
0"I1) = 0"(i M+I), where a~ ~), al M+l) are the bo t tom and top spins in the ith 
column, respectively. 

The part i t ion function for the model on an L x  M lattice can be 
written as 

ZLM = L I-I W(~--aj) I-I f f ' ( o - , - ak )  (2.1) 
{o} ( i , j )  ( i , k )  

where the sum is over  all values 0 to N -  1 of all the spins ai, and the 
products  are over  all S W I N E  edges ( i , j )  and all S E ~ N W  edges 
(/,  k ) .  

o~,,,+,, o~:,,,+,, 

O" I a 2 (73 ~rl.+l 

Fig. 1. The square  latt ice ~'LM with L sites per row and M = 2. The weight functions W and 
if" are indicated. 
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This definition suits a large class of models, including the chiral Potts 
model, t13'~4~ In this paper we consider the critical (N=3)-s ta te  Potts 
model, which is a particular (critical) case of the chiral Potts model. It also 
coincides with the Z 3 Fateev-Zamolodchikov model ~5~ and with the N =  3 
critical Kashiwara-Miwa model/j6) 

We parametrize the Boltzmann weights as 

W(O) = ( 1 + x ) / x  (2.2a) 

W(1)= W(2)= 1 (2.2b) 

if(O) = 1 + 3x (2.2c) 

ff~(1)-- if'(2) = 1 (2.2d) 

where x can be considered to be an anisotropy parameter. 
From (2.1), ZLM(X ) will be a Laurent polynomial in x with positive 

integer coefficients, which we have calculated for a variety of lattices. 
For the calculations, we actually used edge transfer matrices ~17~ instead 

of (2.1) to calculate the partition function, calculating the polynomials 
using Fortran and modular arithmetic, t181 When considering the zeros of 
a polynomial, it is important to evaluate the coefficients exactly, as the 
location of the zeros can be sensitive to errors in the coefficients. 

We found the length of the largest coefficient in the polynomials to 
increase exponentially with the size of the lattice, and for the 6 x 6 lattice, 
the longest coefficient was already an integer of order 10 66. A rotation of 
the lattice through 90 deg is equivalent to replacing x by 1/3x, so for 
toroidal boundary conditions, ZLM must be a polynomial in y = 3x + 1Ix. 
Expressing the partition function in terms of y halves the degree of the 
polynomial, and approximately halves the length of the coeff• both of 
which make it easier to handle the polynomial. The partition functions for 
1 • 1 up to 5 x 5 lattices are presented in the appendix in terms of the 
variable y. 

The free energy of the Potts model at criticality can be found either by 
its Temperley-Lieb equivalence to an ice-type model as in refs. 9 and 17 or 
by the inversion relation methodJ 81 Following ref. 8, we introduce the 
variable #, where 2 cos p = x /~ ,  so ~ = n/6. We then reparametrize the 
anisotropy variable x in terms of the spectral parameter v, 

1 sin(/~ - v) 
(2.3) 

x - x / ~  s i n  v 
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The Bol tzmann weights are then 

sin(~ + v) 
w(0) 

sin(p - v) 

W(0) s in(2/~-  v) 
sin v 

(2.4) 

(2.5) 

The others remain unchanged. Regarding v as a variable, we denote the 
parti t ion function per site for a finite lattice as XLM(V)= (ZLM) ~/2LM, and 
for the infinite lattice 

K(v)=  lim ~:LM(V) (2.6) 
L , M ~ c ~  

where the limit is taken through large values of both L and M. 
In ref. 8 a number  of relations for x(v) are given, including the inver- 

sion, periodicity, and crossing symmetry  relations. The latter two are 

K(v) = ~(n + v) (2.7) 

~(v) = K(p - v) (2.8) 

To  match the normalizat ion of the weights (2.4) and (2.5) with those used 
in ref. 8, we should take the constant  Po therein to be 

sin p sin 2p 
P o -  . (2.9) 

sm v sin(p - v) 

The inversion relations for ~:(v) then read ~s) 

x(V) Xac(-v)=pZsin(l~+v)sin(#-v)/sin2 p (2.10a) 

~c(v) x,c(2/~ - v) = Po sin v sin(2# - v)/sin 2 p (2.10b) 

x(v) x ,c(n-v)= -posin(p-v)sin(p+v)/sin2 p (2.10c) 

x(v) x,c(n + 2p - v) = - p~ sin v sin(2# - v)/sin 2 # (2.10d) 

where n,~(v) is the analytic continuation of •(v) through the point v = 0, 
defined in ref. 8. To  get the free energy from the inversion relations, one 
uses Eqs. (Z10a)  and (2.10b) when 0 < R e ( v ) < # ,  (2.10b) and (2.10c) 
when p < Re(v) < hi2, (2.10c) and (2.10d) when n/2 < Re(v) < # + hi2, and 
Eqs. (2.10d), (2.10a), and (2 .7) for  #+n/2<Re(v)<n. 

This divides the complex v plane into four regions, in each of 
which ~(v) has a different analytical form. The physical regime is when 
0 < R e ( v ) <  #, where all the Bol tzmann weights are real and positive. The 
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expressions for ~c(v) in each of the regions can be found from the 
appropr ia te  inversion relations above with some analyticity assumptions Cs~ 
on K(v), and the results are presented here for completeness. 

(i) For  0 < R e ( v ) < # :  

f ~o cosh(~_2p) t s inhv t s inh (#_V) t  d t (2.11a) 
In ~c(v) = In Po + 2 

_ ~ t sinh ~t cosh pt 

(ii) p < Re(v) < �89 

In x(v) = In Po + 2 f ~  ~(# '  v, t) s i n h ( v -  p) t 
_, t s inh~ts inh(rc_2#) td t  (2.11b) 

where 

~ ( l ~ , v , t ) = s i n h ( ~ - # ) t s i n h ( ~ - 2 p - v ) t + s i n h l ~ t s i n h ( v - 2 # ) t  (2.1 lc) 

(iii) l i . 5~ < Re(v) < p + ~rc. 

f~o cosh/~t cosh(rc - 2#) t  - cosh 2pt cosh(2v - ~ - / ~ ) t  
In K(O) In Po + dt J _ .o t sinh rot cosh pt 

(2.11d) 

(iv) / ~ + ~ < R e ( v ) < ~ :  

l n K ( v ) = i n p o + 2 f  ~- ~ ( p , r ~ + p - v , t )  sinh(rc-V)t dt (2.11e) 
_ ~ t sinh ~t sinh(rc - 2#) t 

Equat ion (2.7) is used to find in In ~(v) outside the range 0 < v < ~ .  
Since p = ~/6 is a rational fraction of ~, we can reduce these integrals to 
infinite series. For  the physical regime, Eq. (2.11a) thus gives 

1 1 4 sin 6v(2n--  1) + 2  
In ~c(v) = ~  n 3 +  ~ i~nn --- i ~  ( p - 2 v ) I n  cot 3v 

n =  1 

+In sin(p+v) sin(21~-v) t- ~ ln [ t an  v t a n ( / ~ -  v)] (2.12) 
sin(/~ - v) sin v 

In the thermodynamic  limit, we expect the zeros of the parti t ion 
function to lie on the boundaries  between these phases, which is when 
R e ( v ) = 0 ,  #, r~/2, or  #+re /2 .  

We introduce a new variable 

Z = e 2iv - -  ( 1 - e)2)x - 092 
(1 - c02)x + 1 (2.13) 
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and have plot ted the zeros for the finite lattices in the z plane. Then the 
boundar ies  between the phases are the rays a r g ( z ) = 0 ,  n/3, rc, or  4rt/3, or  
equivalently the line R e ( x ) = - 1 / 2  and the circle [ R e ( x ) + l / 3 ] 2 +  
Im(x)2 = 1/9. These rays in the z plane are indicated in Fig. 2. 

The zeros in the z plane for the 4 x 4 ,  5 x 5, and 6 x 6  lattices are 
shown in Figs. 2-4,  respectively. They are beginning to fall on the expected 
rays, with some scatter  at the ends of each ray. Also note the line of 
zeros for the 5 x 5 lattice with arguments  of approximate ly  ___ 2rc/3. F o r  the 
lattices we looked at (1 x 1 through 6 x 6), these occurred when L and M 
were both odd. 

We can verify the calculat ion in ref. 8 of the density of zeros lying 
on each contour  of the phase diagram. According to Eqs. (5.15) of 
ref. 8, one would expect to find for an L x M  lattice the fraction 
( n -  3 /~ ) / (n -  2 p ) =  3/4 of the zeros on the rays arg z = 0 and n/3, and the 
other/~/(rr - 2/0 = 1/4 of the zeros on the rays arg z = rc and  47r/3. That  this 
is the case can be verified from the included graphs,  and is most  obvious 
in Fig. 2, which shows the d is t r ibut ion  of zeros for the 4 x 4 latt ice par t i -  
t ion function, and the rays on which we would expect the zeros to lie in the 
the rmodynamic  limit. There are 64 zeros, with 8 of them "on" each of the 
rays arg z = rt and 4rc/3, and  24 of them "on" each of the remaining two 
rays, as expected. 

4.0 

2.0 

0.0 . . . .  

-2.0 

o / '  
J 

/ 

/ '  
/ / ,~ 

,%'* 

/ 

/ 
-4.0 

-4.0 -2~0 0.0 2.0 4.0 
Re(z) 

Fig. 2. Zeros of the partition function for 4 x 4 lattice, showing the lines on which the zeros 
are expected to accumulate in the infinite-lattice limit. 
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5.0 

3.0 

1.0 

-1.0 

-3.0 

j o  

i o  

-5.0 
-5.0 -3.0 -I.0 1.0 3.0 5.0 

Re(z) 

Fig .  3. Zeros of the partition function for the 5 x 5 lattice, 

2.2. Skew-Toroidal Boundary Conditions 

The effect of introducing skewed boundary conditions onto the lattice 
was also investigated. For an L x M lattice with toroidal boundary condi- 
tions, we identify the first and last spins in each row and the top and 
bottom spins in each column. If we skew the boundary conditions, we 

5.0 

3.0 

1.0 

-1.0 

-3.0 

-5.0 
-5.0 

Fig .  4. 

,~o~ 

f 
~ 

-3.0 -1,0 1.0 3.0 
Re(z) 

Zeros of the partition function for the 6 x 6 lattice. 

5.0 
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instead identify a t = a t . + l + h  , a l l ~ = a ~ ' u + l ) + v ,  where h and v are the 
horizontal and vertical skewing parameters, a l ,  aL+l are the first and last 
spins in a horizontal row, and al ~1, al M+ 11 are the bottom and top spins 
in column i. We denote the partition function of the model on the L • M 

7 j'v We can restrict without lattice with skewing parameters h and v as --LM" 
lOSS of generality the skewing parameters to take the values 0, 1, 2, so 
in general we will expect nine partition functions with skewed boundary 
conditions. 

These nine functions quickly reduce to five, and only four for a square 
lattice, when symmetries of the model on the lattice are taken into account. 
From Eqs. (2.2a)-(2.2d), replacing x by 1/3x is equivalent to interchanging 
W(n) with if(n). Reflecting the lattice horizontally or vertically, we thus 
get 

ZLM(X) -- --~.u (2.14) 

and so we are just left with the following five partition functions: 

130 
Z LM(X) = ZLM(X ) 
z O l  (x) 02 = Z L u ( x )  

z '~~ Z ~~ (2.15) 

11 Z LM(x) = Z ~ ( X )  

12 z LM(X) = Z ~_~(X) 

Rotating the lattice through 90deg is equivalent to interchanging W(n)  
with fie(n) and L with M. This gives the symmetry relation 

Z L~,I(x) - ~ uL (2.16) 

which, on a square lattice, gives us the relationship 

Ol = Z ~ ~  Z LL(X) (2.17) 

and so there are only the four different partition functions on a square 
lattice. 

Finally we note the relation following from the self-duality property of 
the model 

oo Z LM(X)= ZOLIM(X)'-~ Z ~OM(X)'-~ Z LM(X)11 ._[_ ZIL2M(X) ( 2 , 1 8 )  

and this was verified for all the partition functions generated. 
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Guided by the Ising model case [Eq. (5.2) of chapter IV of ref. 19], 
one may expect that certain linear combinations of these partition func- 
tions have zeros located on some simple curves (even for finite L and M). 
This does not seem to be the case for the three-state Potts model, we were 
unable to find any linear combination whose zeros lay on simple contours 
and remained there as the lattice size was increased. 

3. F INITE-SIZE C O R R E C T I O N S  

3.1. Conformal  and M o d u l a r  Invariance 

The partition functions we have calculated can be used to test the 
predictions of finite-size corrections due to conformal and modular 
invariance. Many reviews of these subjects exist, 1~2'2~ and only a 
summary of the necessary results will be presented here. 

At criticality, various observables of a statistical mechanical system are 
believed to be invariant under scaling and conformal transformations. This 
assumption, which originally led to predictions of relationships between 
the critical exponents, ~24~ has been developed into a classification of 
universality classes of the critical behavior for two-dimensional systems 
(determined by a parameter c, the central charge of the Virasoro algebra 
associated with the model) ~25~ and more recently into a classification of the 
modular invariant partition functions on a torus, t26~ 

It was shown in ref. 27 that for a statistical mechanical system with a 
Hermitian transfer matrix, corresponding to a unitary conformal field 
theory, if c < 1, then c is restricted to take on the values 

6 
c = l  (3.1) 

h(h- l) 

where h = 4, 5, 6,.... 
Modular invariance predicts the leading corrections to the partition 

function should take the form (1.1), where ZL~., is the partition function on 
an L x M lattice, f is the free energy per site in the thermodynamic limit, 
and Z(q) describes the leading finite-size corrections in the limit of L, M 
large, with the ratio L/M fixed. Here q is the modular parameter, given 
byl2Ol 

q=e 2~i~, r =ei~'~-~ (3.2) 

where 0 = 6v is the spatial anisotropy of the model. 
One requires Z(q) to be invariant under the action of the modular 

group, which maps a torus formed by identifying sides of a parallelogram 
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in the complex plane with vertices 0, 1, z, and 1 + r  onto itself. The 
modular  group acts through the generators T and S, where 

T: z ~  1 + r  (3.3a) 

S: T ~ - r  - I  (3.3b) 

Note  that  the rotat ional  symmetry  x ~ 1/3x of ZLM corresponds to (3.3b). 
These requirements place very stringent constraints on the form of 

Z(q), and in fact lead to a complete classification of all possible modular  
invariant  part i t ion functions for c < 1 theories, which are labeled by the A, 
D, and E Lie algebras. I-'61 

The three-state Pot ts  model  is related to the D4 minimal conformal 
field theory 126~ with c = 4/5, h = 6. r The corresponding modular  invariant 
part i t ion function reads 

Z(q) = Iz~,~(q) + Z4.1(q)] 2 q- Izz,~(q) + Z3. ~(q)l z + 2 IZ3,3(q)[ 2 + 2 ]Z4,3(q)] 2 

(3.4) 

where Zr,.; is the character  of the representat ion of the Virasoro algebra, 
given by 

Zr, s = q  -c/24 f i  ( 1 - -q" )  - l  
t : =  1 

X ~ {q {[2h(h-l)n+hr-(h-l)s]2-1}/4h(h-l) 

n =  - -  ~ 0  

_ q {C2h~h -  l l , , + h r +  Ih- -  l J . q ' - -  I }/4h(h-- 1)} (3.5) 

3.2. Numerical  Results 

In this section, we shall verify the predictions of modular  invariance by 
numerically evaluating the correction terms in (1.1) for various lattice sizes 
and demonstra t ing that they vanish as the lattice size increases. Writing the 
correction terms as CLM, we can write (1.1) as 

In ZLM(V) = -- 2LMf/kT + In Z(q) + CLM (3.6) 

and we expect that  

CLM--*O as L , M ~ o v  (3.7) 

It is computat ional ly  easier to evaluate the part i t ion function ZLM 
numerically for a part icular  value of x than it is to evaluate the entire 
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Table I. Correction Terms CLM for  the Isotropic Model  

M L = I  2 3 4 5 6 7 8 9 

1 0.0341 0.0852 0.1580 0.2342 0.3078 0.3781 0.4458 0.5119 0.5771 
2 0.0852 0.0194 0.0251 0.0360 0.0479 0.0603 0.0728 0.0852 0.0974 
3 0.1580 0.0251 0.0132 0.0140 0.0170 0.0206 0.0242 0.0279 0.0317 
4 0.2342 0.0360 0.0140 0.0099 0.0098 0.0110 0.0124 0.0139 0.0154 
5 0.3078 0.0479 0.0170 0.0098 0.0079 0.0077 0.0082 0.0089 0.0096 
6 0.3781 0.0603 0.0206 0.0110 0.0077 0.0066 0.0064 0.0066 0.0070 
7 0.4458 0.0728 0.0242 0.0124 0.0082 0.0064 0.0057 0.0055 0.0056 
8 0.5119 0.0852 0.0279 0.0139 0.0088 0.0066 0.0055 0.0050 0.0049 
9 0.5771 0.0974 0.0317 0.0154 0.0096 0.0070 0.0056 0.0049 0.0045 

polynomial ,  and so for these calculations we are able to use larger lattice 
sizes than in Section 2. Here, we present results on up to 9 x 9 lattices. 

For  the numerical studies, we considered an isotropic ( 0 =  1t/2) and a 
particular anisotropic (0 = 7t/4) case of the model. F rom (2.12) and (3.2) we 
have 

(i) 0 = n/2, q=exp(-2nL/M),  f /k  T = 2.0702 (3.8a) 

(ii) 0=r t /4 ,  q = e x p [ - x / ~ n ( 1  +i)L/M], f /k  T= 2.3150 (3.8b) 

where (i) and (ii) correspond to the isotropic and anisotropic cases, respec- 
tively. Using these and the numerical values of ZLM, we calculated CLM. 
They are given in Tables I and II for all L • M lattices with 1 ~< L, M ~< 9. 
The correction terms are close to zero as expected, and vanish as the lattice 
size increases in both directions. 

Table II. Correction Terms CLM for the Anisotropic Model  

M L = I  2 3 4 5 6 7 8 9 

1 0.0256 0.0266 0.0385 0.0505 0.0625 0.0746 0.0867 0.0988 0.1111 
2 0.0266 --0.0090 0.0141 0.0109 0.0116 0.0115 0.0110 0.0103 0.0095 
3 0.0385 0.0141 -0 .0042 0.0085 0.0086 0.0077 0.0076 0.0074 0.0069 
4 0.0505 0.0109 0.0085 0.0001 0.0057 0.0070 0.0065 0.0062 0.0060 
5 0.0625 0.0116 0.0086 0,0057 0.0021 0.0045 0.0057 0.0056 0.0053 
6 0.0746 0.0115 0.0077 0.0070 0.0045 0.0028 0.0039 0.0047 0.0048 
7 0.0867 0.0110 0.0076 0,0065 0.0056 0.0039 0.0029 0.0035 0.0040 
8 0.0988 0.0103 0.0074 0,0062 0.0056 0.0047 0.0035 0.0029 0.0031 
9 0.1111 0.0095 0.0070 0.0060 0.0053 0.0048 0.0040 0.0031 0.0028 
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Fig. 5. Next-order corrections to the modular invariant partition function. Top: isotropic 
model; below: anisotropic model. 

We next restricted our  attention to just the square L x L lattices. In 
this case, we have for the isotropic model (i) In Z(q) = 1.0479 and for the 
anisotropic model (ii) In Z(q)= 1.0535. Figure 5 plots CLL against 1/L for 
the square lattice models. Both of the curves are clearly converging toward 
zero as expected. For  the isotropic model, the curve is approximately 
linear, with 

CLL = 0 .04L- l  (3.9) 

The results are less clear for the anisotropic model, but still compatible 
with (3.7). 

A P P E N D I X :  T H E  P A R T I T I O N  F U N C T I O N S  

We have calculated the partition functions from Section 2 for all 
values of L and M in the range 1 ~<L, M~<6, and all values of h and v. 
Electronic and hard copies are available on request from the first author. 
Here we present only the square lattice nonskewed partition functions 
for L = 1 ..... 5. It is convenient to divide each of them by a factor of 3 L 
and (using our earlier remarks) to exhibit them as polynomials in y =  
3x + 3 + 1/x, so we actually present 

P LL(Y) = 3-LZLL(y) (A1) 
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W e  have  

PJI(Y) = 3 + 2y + ):2 

P22()') = 243 + 648y + 324y 2 - 72), 3 4- 534y 4 - 184); 5 4- 92y 6 - 8y 7 q- yS 

P 3 3 ( Y )  = 177147 + 1062882y + 2302911y 2 

+ 2047032y 3 + 1377810y 4 + 2913084) :  

+ 3158028y 6 + 664848y 7 + 103518y 8 + 930852y 9 

+ 306666y ~~ - 270864y II + 220374) :2  

_ 62532y13 + 16956y14 _ 2160y15 + 297),16 _ 18y17 + y18 

P 4 4 ( Y )  = 1162261467 + 12397455648y + 55788550416), -~ 

+ 136372012128y 3 + 214315274952y 4 + 324629671968), 5 

+ 582654906288y 6 + 750632777568y 7 + 607521384972y 8 

+ 795120766560y 9 + 965737104624),1~ + 130605470496y i 1 

+ 322442584488y12 + 916063289568y~3 _ 526868886960y14 

+ 147997956384y ~5 + 596145500838y 16 - 737714208096y 17 

+ 610533631440y 18 - 343154709792y 19 + 156664410984y 2~ 

- 55836596448y 21 + 16860264048y 22 - 4098594336), 23 

+ 856735500y 24 - 143074912y 25 + 20606608y 26 

_ 2274208y27 + 217560yz8 _ 14816y29 + 880),30 _ 32y31 + y32 

P55(Y) = 68630377364883 + 1143839622748050y + 8578797170610375y z 

+ 38127987424935000), 3 + 114511055566221450y 4 

+ 268776892687508460y 5 + 589388078205374850y 6 

+ 1246116772225702800y 7 + 2209159127195440650),  8 

+ 3194839081210230900y 9 + 4647346048981897830),  1~ 

+ 70795570523417838003,11 + 8225530257835830150y12 

+ 7279248720513503700:,13 + 9357732890461402200y ~4 

+ 11647930212445937760), ~5 + 5762094309484412175y 16 

+ 35175244302303682503, ~7 + 9571985653589609175y ~8 

+ 4023612873756685800),19 _ 2229800910702224940y 2~ 



Three-State Critical Potts Model 679 

+ 4898159054026700400y2~+ 2681786734169855850y 22 

- 3147689863270981800y 23 + 2051627825339895150y 24 

+ 1388963485815183972y25-2128929001082085150y 26 

+ 1331521145545374000y 27 + 57684225191190300y 28 

-746264103632814600y 29 + 794712829019154840), 3~ 

- 530326171478212200y3~+ 272216641223522475y 32 

- l12688467988737950y33+39181982508236025y 34 

-115495323366445203, 35 + 2939341744610550y 36 

-645489038603700y 37 + 123764044894650y 3s 

--20572630471200y39+2994872555520y 4~ 

-376168331200y4t+41274998450y42-3850715800y 43 

+ 3 1 1 8 8 7 3 0 0 y  44 - - 2 0 8 9 0 9 6 0 3 ,  45 + 12018003, 4 6 -  54000),  47 

+ 20253,48 _ 50y49 + ySO 
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